
Dynamical symmetries in a spherical geometry. I

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1979 J. Phys. A: Math. Gen. 12 309

(http://iopscience.iop.org/0305-4470/12/3/006)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 19:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/12/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 12, No. 3, 1979. Printed in Great Britain 

Dynamical symmetries in a spherical geometry I 

Peter W Higgs 
Department of Physics, University of Edinburgh, James Clerk Maxwell Building, The 
King’s Buildings, Mayfield Road, Edinburgh EH9 352, UK 

Received 13 September 1978 

Abstract. The two potentials for which a particle moving non-relativistically in a spherical 
space under the action of a conservative central force executes closed orbits are found. 
When the curvature is zero they reduce to the familiar Coulomb and isotropic oscillator 
potentials of Euclidean geometry. The corresponding vector (for the former) and sym- 
metric tensor (for the latter) constants of motion are constructed. For each system in N 
dimensions the Poisson bracket algebra in classical mechanics, and the commutator algebra 
in quantum mechanics, of these constants of motion and the angular momentum 
components are constructed. It is proved that by an appropriate choice of independent 
constants of motion these Poisson bracket algebras may be transformed into Lie algebraic 
structures, those of the symmetry groups SO(N + 1) and SU(N) respectively: the Hamil- 
tonian of each system is expressed as a function of the Casimir operators of its symmetry 
group. The corresponding transformations of the quantum mechanical commutator alge- 
bras are performed only for N = 2: the corresponding expressions for the Hamiltonians as 
functions of the Casimir operators yield the energy levels of the two systems. 

1. Introduction 

It is well known (Bacry, Ruegg and Souriau 1966, Stehle and Han 1967) that the 
Hamiltonian of a particle moving non-relativistically in N-dimensional Euclidean space 
under the action of a conservative central force is symmetric under a Lie group larger 
than SO(N) ,  the group of rotations about the force centre, in just two special cases: 
these are the Kepler problem, for which the higher symmetry group is SO(N + 1) for 
bound states and SO(N, 1) for scattering states, and the isotropic oscillator, for which it 
is SU(N). In classical mechanics the special feature that distinguishes these two systems 
is that all the bounded orbits are closed (Bertand 1873), a feature which permits the 
construction of constants of the motion which specify the orientation of an orbit within 
its plane. In the Kepler problem these constants are Cartesian components of the 
Runge-Lenz vector (Laplace 1827, Runge 1919, Lenz 1925), which is parallel to the 
major axis of the orbit: in the oscillator problem they are Cartesian components of a 
symmetric second order tensor, which is coplanar with the orbit and has the same 
principal axes (Fradkin 1965). In each case the higher symmetry is revealed when one 
constructs the Poisson bracket algebra of the constants of the motion (including the 
angular momentum components, which specify the plane of the orbit): if the Runge- 
Lenz vector (Fradkin tensor) is suitably normalised, this algebra has the structure of the 
Lie algebra of SO(N+ l)(SU(N)).  These higher symmetries are not geometric (that is, 
they cannot be expressed as mappings of configuration space alone); they are sym- 
metries in phase space, for which the term ‘dynamical symmetries’ is often used. 

0305-4470/79/030309 + 15$01.00 @ 1979 The Institute of Physics 309 



3 10 P W Higgs 

In quantum mechanics, where the Poisson brackets are replaced by commutators, 
standard techniques of matrix representation theory enable one to calculate, for these 
two systems, both the spectrum of the Hamiltonian and the degeneracy of each energy 
level with respect to angular momentum eigenvalues, which must be that of an 
irreducible representation of the higher symmetry group (Pauli 1926, Fock 1935, Jauch 
and Hill 1940, Baker 1956). 

In this paper the corresponding dynamical systems which result from the replace- 
ment of N-dimensional Euclidean geometry by that of the N-sphere are studied. In $ 2 
it is shown that in a certain co-ordinate system, which is associated with a certain 
projection of the N-sphere (embedded in Euclidean space of N + 1 dimensions) onto a 
tangent N-plane, closed orbits occur for the same potentials as in Euclidean geometry. 
The corresponding vector or tensor constants of the motion and their Poisson bracket 
algebras are constructed in 0 3. In 0 4 the corresponding quantum mechanical opera- 
tors and commutator algebras are found. 

The rest of the paper concentrates on two-dimensional systems, since these exhibit 
the essential features of the dynamical symmetries (SO(3) and SU(2)) without the 
complications which arise for N > 2 from the non-trivial structure of the rotation group 
SO(N).  In $ 5 the Hamiltonians of the quantum mechanical Kepler and isotropic 
oscillator systems on a 2-sphere are expressed as functions of the Casimir operators of 
SO(3) and SU(2) respectively. In § 6 it is shown how the generators of the dynamical 
symmetries of these systems may be used, in a Schrodinger representation, to construct 
wavefunctions. Further implications of the algebra are discussed in § 7. A subsequent 
paper (Leemon 1979) will deal with the generalisation of these results to N dimensions 
and, in particular, will discuss the physically most relevant dimension, N = 3. 

The quantum mechanical Kepler problem on a 3-sphere has previously been 
discussed by Schrodinger (1940)t, who found the energy levels and their degeneracy in 
angular momentum by factorising the second order differential operator in the radial 
Schrodinger equation. The isotropic oscillator on a 3-sphere has been studied, in the 
guise of ‘a soluble non-linear chiral model’ by Lakshmanan and Eswaran (1975), who 
solved the radial Schrodinger equation. It was the recognition that the angular 
momentum degeneracy of the energy levels found by these a:ithors was just that of the 
Euclidean isotropic oscillator levels which originally motivated this investigation of 
dynamical symmetries in a spherical geometry. 

2. Classical dynamics on a sphere 

There are several co-ordinate systems on a sphere which are useful generalisations of 
the Cartesian systems of Euclidean geometry: they correspond to various projections of 
the N-sphere, embedded in a Euclidean space of N + 1 dimensions, onto the tangent 
N-plane at the chosen origin. One such system, employed by Lakshmanan and 
Eswaran (1975), is obtained simply by imposing the constraint 

where A is the curvature of the sphere, upon the N + 1 Cartesian co-ordinates 40, qi 
(i = 1 . . . N ) .  The N independent variables qi are then Cartesian co-ordinates of an 

t I am grateful to Professor Asim Barut for bringing this paper to my attention. 
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orthogonal projection of the sphere: their domain is the disc qiqi S A  and each set {si} 
corresponds to two points of the sphere. 

For the purposes of this paper another projection is more useful, for reasons which 
will shortly be made clear: this is (in cartographers’ jargon) the gnomonic projection, 
which is the projection onto the tangent plane from the centre of the sphere in the 
embedding space. Cartesian coordinates of this projection will be denoted by x i .  The 
relation between the two projections is 

qi = x i (  1 + Ar2)-’” (2) 
where 

2 r = xix i .  

From equations (1) and (2) one readily obtains the metric 

ds2 = (1 +Ar2)-’(x. dx/r)’+(l +Ar2)-’[dx. dx- (x .  dx/r)’]. (3) 

The advantage of this projection over all others for the analysis of the motion of a 
particle on a sphere stems from the fact that free particle motion (uniform motion on a 
great circle) projects into rectilinear, but non-uniform motion on the tangent plane. 
That is, the projected free particle orbits are the same as in Euclidean geometry: the 
curvature affects only the speed of the projected motion. It will now be shown that this 
feature persists in the presence of a central force derived from a potential V(r). 

The Lagrangian for the non-relativistic motion of a particle of unit mass under such 
a force is ti’- V, where S 2  is defined in (3). The momentum conjugate to x is thus 

2 -2x(x. i) 
p = (1 +hr  ) -+(l +Ar2)-1(i-x(x,  a)/?) r 

so the angular momentum tensor is 

Li, = xipj  - xipi = (1 + Ar2)-’(xixi - xixi) 

and the Hamiltonian is 

~ = ( 1 + ~ r ~ ) ( p ~ + h ( ~ . p ) * } . t  V(r) 

(4) 

Rotational symmetry of H implies the constancy of Lii, so every projected orbit lies in a 
plane Liixi = 0. In terms of polar co-ordinates (r, e )  in that plane angular momentum 
and energy conservation take the forms 

(1 + Ar2)-’r2r$ = L,  ( 5 a )  

where 

L2  = iLi)Lii, 

and 

$[( 1 + Ar2)-’i2 + (1 + Ar2)-’r282] + V(r) = E. 

From the last two equations one finds the differential equation of the orbit 

$L2[r-4(dr/d8)2 + r-’] + V(r) = E  -tAL2. (7) 

Clearly, since the curvature appears here only in the combination E -4AL2, the 
projected orbits are the same, for a given V(r), as in Euclidean geometry. 
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In particular, it follows that the orbits are closed only if 

V ( r )  = -Fr-l  (Kepler problem) 
or 

(isotropic oscillator) 1 2 2  V ( r ) = w  r 

where p and w are constants. 
In terms of the angular coordinate ,y on the sphere, defined by 

112 A r =  tanx, 

these potentials have the forms 

V = -FA cot x 
v=' 2~ 2 A- '  tan2 x. 

In the form (Sa) the Kepler (or Coulomb) potential is clearly antisymmetric between 
the two hemispheres: if ,U is taken positive, it has an attractive singularity at the origin 
x = 0 (north pole) and an equal repulsive singularity at the antipodal point x = T (south 
pole). Moreover, unlike the Euclidean counterpart, here all the orbits are closed, since 
the sphere is compact - those projections which do not close (hyperbolae) correspond to 
closed orbits which cross the equator (x = &). In the limit A + 0 one recovers the 
Euclidean Kepler (attractive Coulomb) orbits, both bounded and unbounded, from the 
northern hemisphere and the unbounded orbits of the repulsive Coulomb potential 
from the southern hemisphere. 
On the other hand, in the form (9a) the oscillator potential is clearly symmetric 

between the two hemispheres and singular on the equator. Possible orbits are thus 
confined to one hemisphere or the other and take the same form on each. As in 
Euclidean space, solutions of the orbit equation exist only if w 2  is non-negative. It 
should be noted that, on account of the singularity at the equator, in the limit w + 0 one 
does not recover free particle motion but rather the motion of a particle which is free 
apart from a reflecting barrier at the equator. 

3. Constants of the motion 

3.1. The Kepler problem 

In Euclidean space the Runge-Lenz vector, which at every point on a Kepler orbit lies 
parallel to the major axis, has Cartesian components 

Ri = -Liipi +kxi / r .  (10) 

{Ri, H }  = 0 (1 1) 

{R, Rj} = -2HLij. (12) 

R2 = p 2  + 2HL2. (13) 
It is not difficult to find the generalisation of the expression (10) which is appropriate 

to the sphere. The first term in Ri, which is conserved in the motion of a free particle, is 

Their Poisson brackets with the Hamiltonian and with each other are 

The length of the vector is given by 
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constructed from the generators Lii and pi of the Euclidean group E(N). In free particle 
motion on the sphere, conservation of linear momentum is replaced by conservation of 
the vector 

. s r = p + A x ( x . p )  (14) 

whose components are proportional to the corresponding generators of the geometrical 
symmetry group SO(N + l), which are angular momentum components in the embed- 
ding space: 

( 1 5 )  

On making the same replacement in the expression (10) one obtains the required 
generalisation 

(16) 

4 
IT; = A  Loi. 

Ri = -Lijrj  + pxi/r ,  

from which follow the generalisations of ( 1 2 )  and ( 1 3 ) :  

{Ri, R,} = (-2H + 2AL2)Lij, 

R 2 = p Z + 2 H L 2 - A ( L 2 ) ' .  

The Hamiltonian may be written in the form 

H = f (n2  + AL') - w / r  (19) 
since the free particle Hamiltonian is proportional to the quadratic Casimir operator 
(LoiLoi + L2)  of the geometric SO(N + 1 )  group. 

In Euclidean space it is a trivial task to construct a normalised Runge-Lenz vector M 
such that the Poisson bracket algebra of Lij andMi has the structure of the Lie algebra of 
SO(N + 1 ) .  Inspection of ( 1  1 )  and ( 1 2 )  indicates that the vector 

M = (-2H)-"'R, (20) 
which is a real dynamic variable for the bounded orbits (E<O)t, has the required 
Poisson brackets 

{Mi, H} = 0 ( 2 1 )  

{Mi, Mj} = Lif, (22) 
Equation ( 1 3 )  then allows one to write H in terms of the Casimir operator$ of the 
dynamical symmetry group: 

H=-' 2P ' I C  (23) 

c = L ~ + M ' .  

where 

t For the unbounded orbits ( E  > 0) one defines instead 

M' = (+2H)-'"R 

and obtains the algebra of SO(N, 1). 
$The realisation of the generators of SO(N+ 1) by the dynamic variables L,, and M, has only one 
independent Casimir operator on account of the identities, such as 

L,,Mk -4- L,kM, 4- Lk,M, 0, 

which they satisfy. 
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On the sphere, the occurrence of L 2  in the Poisson brackets (17)  makes the 
construction of M a non-trivial task. The requirement that M be a vector under SO(N)  
which is a constant of the motion dictates the form 

M = Rf(L2,  H ) .  (24)  

The Poisson brackets of components of such a vector are 

so the Poisson brackets (22)  are obtained if 

L 2  + M 2  = C ( H ) ,  

where C ( H )  is, so far, an arbitrary function. Now if M, like R, is to be well defined for 
all orbits, it must, like R, be zero when the orbit is circular. Thus L 2  = C ( E )  must be the 
expression for the angular momentum of a circular orbit of energy E, which is found by 
setting R2 = 0 in ( 1 8 ) t .  Therefore the solution of (25)  for the Hamiltonian in terms of 
the Casimir operator C for all orbits is determined by (18)  to be 

p 2 + 2 H C  - h C 2 =  0. 

Explicitly, the analogue of (23)  for the sphere is 

H = S A C  - $ c L 2 ~ - 1  (26)  
and there is no analogue of the corresponding SO(N, 1 )  relation which is valid for E > 0 
in Euclidean space. 

3.2. The isotropic oscillator 

In Euclidean space a symmetric tensort whose principal axes are those of the orbit has 
Cartesian components 

(27)  s.. = p ,  . + w 2 x . x . .  
11 IPl 1 1  

Their Poisson brackets with the oscillator Hamiltonian and with each other are 

The components (27)  clearly form a matrix of rank two, so only two independent scalars 
can be constructed from them. They are 

I1 = Sji = 2H (30) 

(31) I2 = s..s.. - s..s.. = -202L2. 
$1 11 11 I1 

On the sphere, once again all that is necessary to construct the corresponding 
constants of the motion is to replace p in Sii by n:  

(32)  
2 si; = TjTj + w xjxj. 

t The explicit expression so obtained is 

C ( E ) = A - ’ [ E + ( E 2 t h p 2 ) ” 2 ] .  

$This tensor is twice that defined by Fradkin (1965). 
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The Poisson brackets (29) are replaced by 

{s, Ski} = oZ(Ljk6jl +LiIajk +LjkSjI +Ljl8jk) + A  (LjkSjl +LilSjk +LjkSj/ +LjlSik)* (33) 

Equation (30) is replaced by 

Sii = 2 H  - hLz (34) 

but (31) is unchanged. 
In Euclidean space the algebra (29) leads trivially to that of the dynamical symmetry 

group SU(N),  whose generators are Lij and a traceless symmetric tensor Nij, such that 

Clearly one may choose 

Nij = f%-'(Sjj-N-'Skk8jj). (37) 

Equations (30) and (31) now lead to the expression 

NjiN,, = 4(N - 1)H2/Nu2  -2L2 

for the only independent scalar which can be constructed from N+ Hence H is obtained 
as a function of the Casimir operator? of the dynamical group SU(N):  

H = wC1/2 (38) 

where 

4(1- N-')C = Ni,Njj + LipLjj. 

On the sphere, the construction of Nij from Sij  is non-trivial, due to the non-linearity 
of the expressions for the Poisson brackets (33), but may be accomplished by a 
procedure similar to that used in the Kepler problem. Since the matrix Sij has rank two, 
the most general symmetric tensor with the same principal axes, which is also of rank 
two as a matrix, is 

(39) zj = f ( L 2 ,  H)Sij + g(L2,  H)(SimSmj - S,,Sj,) =fSj ,  + w2gLjmLmj. 

The corresponding two scalars are 

I Once again, the realisation of SU(N) by the dynamic variables Li, and Ni, has only one independent Casimir 
operator, on account of the algebraic relations among them. 
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Thus the Poisson brackets (36) are obtained if 

Nij = rj-N-‘Tkk&j 

provided that in (39) the functions f and g are chosen so that 

J L = A ( H )  

J2 = -2L 2 (43) 

where A ( H )  is, so far, an arbitrary function. Then the quadratic Casimir operator of 
SU(N)  is given by 

NijNii -I-L&ij =4(1 -N-’ )C(H)  

where 

C ( H )  = a[A(H)l2 .  (44) 

Once again, the function A ( H )  is determined by considering the circular orbits. For 
the oscillator these are characterised by degeneracy of the two non-zero eigenvalues of 
Sij, which occurs when 

I :  +2I2 = 0. 

This condition has the explicit form 

E = $AL’ + (L‘) ‘ I 2 .  

The same degeneracy condition for 

J :  + 252 = 0 ,  

has the explicit form 

$[A(E)]’  = L2.  

(45) 

The requirement that relations (45) and (46) agree determines A ( E )  to be such that (44) 
is equivalent to 

H =$AC+oC”*. (47) 

This is the required generalisation of the Euclidean relation (38). 

4. Quantum dynamics on a sphere 

The quantum mechanical Hamiltonian No for a free particle on a sphere is obtained 
from its classical counterpart by substituting for the classical Casimir operator of the 
geometrical SO(N + 1) group its quantum mechanical counterpart. The requirement of 
symmetry removes ordering ambiguities other than those which would give rise to an 
unobservable additive constant in Ho. Thus 

H -1 - 2( lr2 + hL2) 

n = p  -t$A{r(x. p )  + (p . x)x}. 

in which the classical definition (14) of n must be replaced by its hermitean counterpart 

(14a) 
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4.1. The Kepler problem 

It is easily verified that the quantum Hamiltonian (19) commutes with the hermitean 
version 

Ri = - $(Lijqj - rJji) + wxi /r  (16a) 

of the Runge-Lenz vector (16). The Poisson brackets (17) are replaced by the 
commutators? 

[Ri, R j ] =  iLi j [ -2H+A{2L2+$(N-3)2}]  ( 1 7 ~ )  

and the length of R is now given by 

R~ = w 2 + ( 2 ~ - ~ ~ 2 ) { ~ 2 + & v -  I ) ~ } - A L ~ .  (18a) 

Just as (17) and (18) imply the relation (26) between the classical Hamiltonian and 
the quadratic Casimir operator of the dynamical SO(N + 1) group, so also ( 1 7 4  and 
(18a) imply a relation between the quantum Hamiltonian and the corresponding 
quantum Casimir operator. In a subsequent paper (Leemon 1979) it will be shown that 
this relation is 

H = $AC -$p2[c +a(N + 1)’]-’. 

In this paper, in § 5 ,  this result will be proved for N = 2, where the algebra has a 
particularly simple structure. 

4.2. The isotropic oscillator 

Similarly, the quantum Hamiltonian 
1 2 2  H = H o + s o  r 

commutes with the hermitean symmetric tensor 

The components have the commutators 

and the scalars formed from them are 

I1 = Sit = 2H - AL2 (34) 
as before and 

1 2  = SijSji -SiiSjj = -w2{2L2 + N ( N -  1)}-A{2(N- l)H - ( N  +$)AL2}. ( 3 1 ~ )  

Again, just as (31), (33) and (34) lead to the relation (47) between the classical oscillator 
Hamiltonian and the quadratic Casimir operator of the dynamical SU(N) group, so also 
(31a), (33a) and (34) lead to the relation 

(47a) 2 1/2 H = i~ (C + $ N )  + [(U2 + $A 2 ) ( ~  + $N )I 

t Natural units, with tr = 1, are used from now on. 
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between the quantum Hamiltonian and the corresponding quantum Casimir operator. 
This will be proved for N = 2 in the next section and for general N in the subsequent 
paper (Leemon 1979). 

5. Energy levels of two dimensional systems 

In two dimensions the angular momentum has only one component L12, and both 
vectors and traceless symmetric tensors have only two components each, which may be 
chosen so as to be raising and lowering operators for the eigenvalues of L12. These 
simplifying features make the solution of the algebraic problems associated with the 
quantum Kepler and oscillator systems relatively straightforward. 

5.1. The Kepler problem 

The commutators of the angular momentum with a vector operator 

[L, Rk] = i(8& - 8jkRi) 

reduce in two dimensions to 

[L, R,] = * R ,  

L = L12 

R ,  = R I  *iR2. 

where 

These commutators generalise to 

f (L )R*  = R + f ( L  * 1). 

Now (17a) and (18a) may be written 

+(R +R - - R-R +) = L{ -2H + A (2L2 + i)} 
4(R+R-+R-R+)=c(2+(2H-AL2)(L2+$)-AL2,  

R+R- = F ( L  -41, 
so 

R-R+ = F(L ++) 

where 

F ( x  ) = + 2 HX * - AX ’ ( x  - a). 
Let the normalised Runge-Lenz vector be 

M = $(Rf(L,  H )  + f (L ,  H ) R ) .  

Condition (22)  requires that its components have the commutator 

[M+, M-] = 2L. 

But using (48) and (49) one finds 

[M+, M-] = [4 ( L  - $)I2 F ( L  - 4) - [4 (L  + f)]’F ( L  + $) 

where 

4 ( L + $ ) = $ ( f ( L , H ) + f ( L +  1,  H ) ) .  

(49) 
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Comparing (50) and ( 5 1 ) ,  one gets a difference equation whose solution is 

( 4 ( X ) l 2  = ( A ( H ! - x Z ) / F ( x ) ,  

where the arbitrary function A ( H )  may be expressed in terms of the SO(3) Casimir 
operator: 

C = L2 +MZ = A ( H )  -$. 
Thus the normalisation factor is given by 

The function C ( H )  is determined by the requirement that 4’ be positive? to be such 
that the denominator contains the numerator as a factor: 

/.L + (2H - Ac)( C + $) = 0. 

Thus the quantum counterpart of the classical relation (26) is 

H = ~ A C  - $CL ’(c + $-l. 

The well known irreducible representations of SO(3) now lead to the energy levels 

E,, =&An(n+1) -$p2(n f$ ) -*  (53) 
where n is a non-negative integer. 

1 = -n, -n + 1 , .  . . n. 

Each level contains angular momentum eigenvalues 

(54)  

5.2. The isotropic oscillator 

The algebra of the two dimensional oscillator may be analysed in the same way. The 
commutators of the angular momentum with a symmetric tensor operator may be 
written 

[L, S,]  = * 2 s ,  

where 
s -1 

f ( L ) S *  = SJ(L  * 2 ) .  

- 2(Sll - S Z Z )  f iSl2. 

More generally, for any f ( L ) ,  

From (31a) ,  (33a)  and (34) one gets 

& ( S + S - - S - S + )  = L [ 2 ( 0 2 - ~ A 2 ) + A ( 2 H - A L 2 ) ]  

i(S+S-+S-S+) = i ( 2 H - A L 2 ) 2 + [ ~ 2 ( L Z +  1)+A(N-?AL2)] 

(55) 

i That 4’ must be non-negative follows from the requirement that M be hermitean. The stronger condition 
d’> 0, follows from the requirement that the relation between R and M be non-singular. The singularity 
which is to be avoided would otherwise occur when a matrix element of the relation involved eigenstates of L 
corresponding to its highest eigenvalue (given C ) ,  for which the numerator function C + a - * *  vanishes. 
These eigenstates are the quantum mechanical counterparts of the circular orbits which were used in 5 3 to 
obtain the classical relation between H and C. 
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so 
S+S-  = G ( L  - l ) ,  S-S ,  = G ( L  + 1 )  

where 
G ( x )  = H 2  - (U’ + ;A2 + AH)x2 +ah *x4. 

Let the normalised traceless tensor which is to be constructed have components 

N ,  = i {S+f(L,  H )  +f(L ,  H)S,l .  

Condition (36) determines their commutator to be 

[N+, N-] = 4L. (57) 

[N+, N-] = ( 4 ( L  - l))’G(L - 1) - ( 4 ( L  + l))’G(L + 1 )  (58)  

4 ( L  + 1 )  = i w ,  H )  +f(L + 2, H ) ) .  

But from ( 5 5 )  and (56) one gets 

where 

Comparing (57) and (58) ,  one obtains a difference equation whose solution is 

(4 (~) ) ’=  ( A ( H ) - x 2 ) / G ( x ) ,  

where now the arbitrary function A ( H )  is related to the Casimir operator of SU(2): 

C = i(N+N- + N-N+) + L2 

= A ( H ) -  1. 

Thus the normalisation factor is given by 

Positivity again requires the denominator to contain the numerator as a factor, whence 

(59)  H = $A (C + 1 )  + [ (w +:A ’)( C + I ) ]*”.  

Since the eigenvalues of C for SU(2) are n ( n  + 2), where the integer n is non-negative, 
the energy levels are 

E,  = $A ( n  + 1)’ + ( n  + 1)w’ (60) 
where 

1 2 1/2  w ’ = ( w 2 + ~ A  ) , 

Each level contains angular momentum eigenvalues 

1 =-n,  - n + 2 , .  . . n. 

6 .  Wavefunctions 

The simultaneous eigenfunctions of H and L2 for these systems may be found, as in 
Euclidean space, by using the vector Ri or the tensor Sii in a Schrodinger representation 
to generate recurrence relations among the radial functions. The angular eigen- 
functions are, of course, hyperspherical harmonics. 
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For example, since R is a vector operator under SO(N)  which is orthogonal to the 
angular momentum and commutes with H K e p l e r ,  its non-vanishing matrix elements are 
(n, 1 f lIRln, 1). So it may be used to relate the radial functions for fixed n and adjacent 
values of 1. 

In particular, for N = 2, the algebra of 8 5.1 provides an explicit relation between R 
and the normalised vector M :  

1 1 / 2  R, = M + ( 4 ( L  +;))-' = M+[A ( L  + $ I 2  + p 2 / ( C  +a)] 
1 1/2  R - = M-(4  ( L  - $))- = M-[A ( L  - 4) + p '/ ( C + a)] . 

Since M ,  are the raising and lowering operators for L in the algebra of S0(3), one 
obtains (with the standard phase convention) 

(62) 

Now the definitions (14a) and (16a) lead to the following expressions for the 
operators R, in a Schrodinger representation where the angular variables x (colatitude) 
and 4 (longitude) are chosen as co-ordinates: 

R,ln, 1)={(nr1 ) (n*1+l ) [A(1 f$ )2+p2 / (n+- i )  1 2 I} 1/2  In, 1*1). 

where 

a = p / A  'I2. (64) 
By combining (62) and (63) one gets the recurrence relations for the wavefunctions 
Xdx) exp(il4): 
[(*l+$)(d/dx 7 1 cot x ) + a ] X , ~  = [(n T 1)(n f 1 + 1){(X1*$)2+a2/(n +5)  1 2 }] 1 / 2  X,,I*~. 

(65) 

In particular, the condition R,ln, n) = 0 provides the differential equation 

[(n +;)(d/dx - n cot x) + a]X,, = 0 

x,, = a,(sin x)"  exp[-ax/(n ++)I 

(66) 

(67) 

satisfied by the eigenfunction corresponding to maximum 1. Its solution is 

where a, is determined by the normalisation 

The recurrence relations (65) now determine the other eigenfunctions. An expression 
for X,, in closed form has been found by Leemon (1979) for general dimension N. 

A similar construction of the Schrodinger wavefunctions for the two-dimensional 
oscillator may be carried out by using the relations 

S,=$AN,[{2y+(C+ 1)1'2}2-(L*1)2]1/2 (69) 
where 

1 2 1/2  ~ = A - ' ( U ~ + Z A  , 

between components of the Fradkin tensor Sii and the normalised tensor Nii, which 
follow from the algebra of 0 5.2. On expressing S, as Schrodinger operators and 
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recalling that +N* are raising and lowering operators for ;L in the algebra of SU(2), one 
obtains recurrence relations between the wavefunctions corresponding to states inl) 
and In, 1*2). Again, Leemon (1979) has constructed explicit expressions for these 
wavefunctions, for any value of the dimension N .  

7. Discussion 

The two dynamical systems, the algebra of whose constants of motion has been analysed 
in the previous sections, share many of the features of their better known Euclidean 
counterparts. For example, the constants of motion Ri and Sii are quadratic functions 
of the generators r i  and Lij of the geometric SO(N+ 1)  symmetry, with co-ordinate 
dependence only in the terms of degree zero. This is indeed what one would expect on 
the basis of the general analysis of dynamical symmetries in Euclidean geometry which 
was performed by Makarov et a1 (1967). It is also to be expected that, like their 
Euclidean counterparts, the Hamilton-Jacobi and Schrodinger equations of the two 
systems will be separable in certain families of elliptic co-ordinate systems on a spheret. 

In one respect the systems are simpler than their Euclidean counterparts: each of 
them contains two parameters, a curvature and a force constant, and as ,the force 
constants tends to zero the structure of the symmetry group remains the same. Thus it 
is, in principle, straightforward to relate the wavefunctions of the Coulomb system to 
those of the free particle on a sphere by a unitary transformation, whereas the 
corresponding Euclidean problem is complicated by the continuous spectra of the 
Hamiltonians. It should be noted however that, as was remarked in 9 2, the limit w + 0 
of the oscillator is not the free particle on a sphere but a particle which moves freely 
apart from a barrier at the equator. The relation between the symmetry group SU(N) 
of this system and the SO(N + 1)  symmetry of the completely free particle has been 
previously discussed by Ravenhall et a1 (1967) for N = 3. 

Finally, it is worth remarking that the quantum oscillator system has the symmetry 
SU(N) even for negative values of w 2 ,  provided that 

1 2  2 -  w 2 + q h  A - u f 2 S 0 .  

When w f  = 0 a simplification of the algebra occurs. In particular, for N = 2 the relation 
(69) which specifies the normalisation of the Fradkin tensor has the simpler form 

S, = &iN,[(C + 1)’ - ( L  f 1)2]1’2, (71) 

from which one obtains the action of S, as raising and lowering operators: 

S,ln, 1 )  = +A ( n  F I)(n f 1 +2)ln, I f  2). (72) 

If the co-ordinates (41, q 2 )  of the orthogonal projection onto the tangent plane at the 
origin are used and the scalar product of two Schrodinger wavefunctions is taken to be 
1 +T (q)+Z(q)  d2q, where the domain of integration is the circular disc into which the 
sphere is projected, the Schrodinger equation of the system has the form 

‘r A full analysis of this property of the three-dimensional Euclidean Kepler problem is to be found in Kalnins 
er a1 1976. For a discussion of the three-dimensional Euclidean oscillator see Boyer er al (1975). 
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For A = 1 this is the partial differential equation satisfied by the Zernike polynomials of 
degree n (Zernike 1934)t. Equation (72) then provides relations between Zernike 
polynomials with angular dependence exp(il4) and exp i(l f 2)4. For N > 2, the 
eigenvalue in the Schrodinger equation (73)  becomes ( n  +$N)2:  its solutions are 
polynomials which are generalisations to the interior of the N-sphere, Aqiqi s 1, of the 
Zernike circle polynomials. 
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